Wrongun & DC

June 2005

ssh://root:uncon@192.168.1.5

= Join the wifi net and ssh into the box using the
account specified in the footer

= Try to pwn the box by adding an account for
yourself or backdooring sshd

ssh://root:uncon@192.168.1.5

ssh://root:uncon@192.168.1.5

= Actually, no... The default install has nothing
enabled (except ssh)

"No wonder it's secure, it's powered off!”

= Source-only patching strategy makes it difficult
to roll out fixes to platforms w/o compilers (i.e.
diskless firewalls, etc.)

ssh://root:uncon@192.168.1.5

= 30 March 05: Bugs in the CF%4? stack can lead to memorx
of TCP segments with invalid SACK options

exhaustion or processin
and cause a system crash.

14 Dec 04: On systems running sakmpd(8) it is possible for a local
user to cause kernel memory corruption and system panic by setting
psec(4) credentials on a socket

20 Sept 04: radius authentication, as implemented by

ogin radius(8%i was not checking the shared secret used for replies
sent by the radius server. This could allow an attacker to spoof a
reply granting access to the attacker. Note that OpenBSD does not
ship with radius authentication enabled

ssh://root:uncon@192.168.1.5

= Jun 2002: Apache chunked encoding
vulnerability (remote uid=nobody) (Apache-

nosejob.c)

* Your high priced security consultants plane
ticket: $1500 * Your high priced security
consultants time: $200/hour * RealSecure
nodes all over your company: $200,000 *
Getting owned by Oday: Priceless

m Gobbles June '02

ssh://root:uncon@192.168.1.5

Source Code Audits
Privilege separation
Privilege revocation
Chroot jailing

New uids
ProPolice

= stricpy() and stricat()
size-bounded string
copying and
concatenation
= Memory protection
s WAX
.rodata segment
Guard pages
Randomized malloc()
Randomized mmap()

atexit() and stdio
protection

ssh://root:uncon@192.168.1.5

= Modifies GCC to catch many stack
overflow issues at compilation time

= Re-orders objects on stack for safety

= Better than StackGuard
= Works on more than just i386

ssh://root:uncon@192.168.1.5

= Memory pages shouldn’t be both writable
and executable

= W/0 hardware support (i.e. 64bit Intels or

various SPARC/RISC) this may have
serious performance considerations

ssh://root:uncon@192.168.1.5

Malloc()
= When you need to allocate less than a page

Mmap()
= A page or greater

Result: each time you perform a memory allocation, you
get a different address.

Note: this breaks A LOT of apps, and the Obsd team
blames app developers for writing rubbish code

ssh://root:uncon@192.168.1.5

= StackGap
= Random 8 byte alignment for top of stack

= Randomize shared library order

= May break stuff if loading lots of libraries

= Not insurmountable for attacker, but
makes it difficult enough that many won't
bother

ssh://root:uncon@192.168.1.5

= Many progs run w/ ‘revoked’ privs:

= Ping, portmap, traceroute, rwalld, pppd,
spamd, httpd, named, authpf, etc.

= Once process kicks off, it runs as unprivileged
user. Attacks against setuid binaries running
w/ privilege revocation won't succeed (unless
they do prior to revocation!)

ssh://root:uncon@192.168.1.5

= Many progs run w/ ‘separated’ privs:

= Ftpd, Sshd, syslogd, pflogd, isakmpd, bgpd, tcpdump,
etc.

= Once process kicks off, it forks. Most work is done by
larger unprivileged process. Priv'd work is done by
smaller process that retains privileges.

= Inter-process communication accomplished by
socketpair()

= Non-trivial to code, however even Linux has adopted
this (for sshd, and maybe some other tasks)

ssh://root:uncon@192.168.1.5

= enigma (local) - SecureCRT

File Edit View Ophons Transfer Script Tools Window Help

]
ﬂ #
Klll p-proxy # Internet serwer conflguratlon database

#
define #hoth# IPwd4 and IPwe entries for dual-stack support,
#
H H #tp stream top nowait root Ausrd libexec/fLpd fhpd -US
I I en #tp stream tops nowait root Jusrd libexecdfipd frpd -US
#1127, 0,0,118021 stream Lop nowait root Ausrdlibexec/fhp-proxy Fhp-proxy
#telnet stream top howait root Auskdlikexec telnetd telnetd -|

™ = - #telnet stream topd nowait rook Ausrdlikexec/telnetd telnetd -
#zhell stream top nowait root Ausrdlibexecrehd rehd -L

I I , l #zhell stream toph nawait root Ausrdlibexecrshd rshd -L
Huucpd stream top nowait root Ausrd libexec uucpd Lz
Huucpd stream tope nowait root Aused libexec uucpd [N ed e
#finger stream top nowait _fingerd Jusrdlibexecdfingerd Fingerd -
=]

#finger stream tops nowait _fingerd Ausedlibexec/fingerd fingerd -

stream top nowait _identd ASusrdlibexecidentd identd —e!

L - - i stream topd nowait _identd Ausrdlibexecidentd identd -e!
He ust I Inet dzram g wait rook Auskd likexectftpd Lftpd —= .
’ Lftphoot

#tfip dgram udps wait root Jusrd libexec/tfbpd Lftpd —= .
tftphoot

127, 0.0, comsat dgram ude wait root Austdlikbexec/conz at comsat
[3:11icomsat dzram udpd wait root Auskdlibexec/cons at comsat
#ntalk dgram ude wait oot Ausrd libexec ntalkd rtalkd
#popd stream top nowait root Jusrdshindpopadd opadd
#pop3 stream tops nowait root Jusrdshindpopadd popadd

Internal services

#echo shrean howait rook interhal

#echo ztream i noait internal

YT100

ssh://root:uncon@192.168.1.5

= Disable root login via ssh
= Disable SSH prot ver 1
= pf (makes iptables look like a kludge)

= Egress filtering is a pain, but will stop 99% of
remote shells

= PF AUTH can grant outbound perms to
specific users

= Setup off-box logging w/ syslog-ng

ssh://root:uncon@192.168.1.5

sappnd set the system append-only flag (superuser only)

schg set the system immutable flag (superuser only)

uappnd set the user append-only flag (owner or superuser only)
uchg set the user immutable flag (owner or superuser only)

Best practices:
= Flag binaries immutable w/ Schg

= Flag log files append only w/ sappend
= Note this breaks newsyslog... deal w/ it

= Note system must be in single user mode to unset these flags

ssh://root:uncon@192.168.1.5

= Enable Trusted Path Execution (TPE)

o gai;)ed on code Mike Schiffman wrote for OpenBSD

= Only files owned by root are executable

= Only users in trusted group can execute arbitrary
non-root Owned binaries
= kern.security.trust_gid=666

= Root can turn function on/off via sysctl
= kern.security.tpe=1

= Note daemon users needs to be added to
?rusiéed group if their binaries are owned by
Iroo

ssh://root:uncon@192.168.1.5

Enable VEXEC

= Integrity verification of executed programs, memory mapped obgects,
and opened files. Uses hash tables. Supports MD5, SHA1, SHA256
SHA384, SHA512, and RMD160.

Creates the Vexec pseudo-device
Creates a fingerprint list of binaries listed in /etc/vexec.conf (using
desired hash?
Turn on via sysctl
= kern.security.vexec.op=1
= kern.security.vexec.verbose=1
m kern.security.vexec.strict=0 (set this to 1 for extra fun!)

ssh://root:uncon@192.168.1.5

= VEXEC is essentially *realtime* TRIPWIRE

thirtysix# Jun 2 11:28:29 thirty=six ~b=sd: vexec_verify: Fingerprint matches. (f
ile=-usr~ binsclear, inode=144518, dew=3)

Jun 2 11:28:29 thirty=six ~bsd: wexec_werify: Fingerprint matches. (file=-susr~-bi
n-clear, inode=144518, dew=32

thirtysix#t ~IL

[A: Cormmand not found.

thirtysix# w

vexec_verify: Fingerprint matches. (file=-usr-bin W, inode=144538, dew=3)

Jun 2 11:28:33 thirty=six ~bsd: wvexec_verify: Fingerprint matches. (file=-usr-bi
n<H, inode=144538, dew=31

Jun 2 11:28:33 thirty=six ~“bsd: wexec_werify: Fingerprint matches. (file=~usr~-bi
n KW, inode=1445383, dew=3)

vexec_openchk: Fingerprint matches. (file=-usr~-lib-libkvm.s0.8.8, dew=3, inode=3
A9156)

11:28AM 54 =ec=, 1 user, load average=s: HB.18, B.H6, H.H2

USER TTY FROM LOGINE IDLE HHAT

root cCa - 11:28AH B w1

thirtysix#t Jun 2 11:28:33 thirtysix ~“bsd: wexec_openchk: Fingerprint matches. [
file=usr~1ib-1libkwHn.=s0.8.8, dewv=3, inode=3809156)

Jun 2 11:28:33 thirty=six ~bsd: wexec_openchk: Fingerprint matches. (file=-usr-1
ibslibkwn.=0.8.8, dev=3, inode=3H9156)

thirtysix# _

ssh://root:uncon@192.168.1.5

Enables userland privacy
Finger
Last
Netstat
W
a Who

Last version (for 3.6) at
http://www.innu.org/~brian/Stephanie/

ssh://root:uncon@192.168.1.5

= The OpenBSD kernel provides four levels
of system security:

= -1: Permanently insecure mode
= init(8) will not attempt to raise the securelevel

= may only be set with sysctl(8) while the
system is insecure

ssh://root:uncon@192.168.1.5

= 0: Insecure mode
= used during bootstrapping and while the

system is single-user

= all devices may be read or written subject to
their permissions

= system file flags may be cleared

ssh://root:uncon@192.168.1.5

= 1: Secure mode
default mode when system is multi-user
securelevel may no longer be lowered except by init
/dev/mem and /dev/kmem may not be written to

raw disk devices of mounted file systems are read-only

system immutable and append-only file flags may not be
removed

kernel modules may not be loaded or unloaded
the fs.posix.setuid sysctl variable may not be raised
the net.inet.ip.sourceroute sysctl variable may not be raised

ssh://root:uncon@192.168.1.5

= 2: Highly secure mode
= all effects of securelevel 1
= raw disk devices are always read-only whether

mounted or not

= Settimeofday and clock_settime may not set the time
backwards or close to overflow

= pfctl may no longer alter filter or nat rules

= the ddb.console and ddb.panic sysctl variables may
not be raised

ssh://root:uncon@192.168.1.5

= Non trivial, but we've found 3 ways
= If /etc/ (dir) is schg, 2 methods

= If /boot (file) is schg, but /etc is not...

ssh://root:uncon@192.168.1.5

= Lazyman'’s way (no style points tho ®)
= Simply mv /etc/ /etc.off

= mkdir /etc && cd /etc.off; tar cf - .\
= | (cd /etc; tar xpf -)

ssh://root:uncon@192.168.1.5

= If /etc/boot.conf doesn't exist... (and it doesn't by
default !)

= Create /etc/boot.conf, and “reboot” from your own
“customised” kernel ;-)

= Set option INSECURE in the kernel config
= Remove stephanie/vexec/etc
= Remove securelevel code

= Add in an openbsd rootkit backdoor
= Hell, it's your kernel, and hence your box!

ssh://root:uncon@192.168.1.5

= usr/mdec/biosboot
= first stage bootstrap
o / boot

= system bootstrap
= [etc/boot.conf

= system bootstraps startup file

= If we can write to the bootloader, we can install our own bootloader
which looks for the boot.conf wherever we want to put it. And we
would have gotten away with it too if it wasn't for those pesky
kernels...

ssh://root:uncon@192.168.1.5

= Quick PPTPD setup using poptop & userland GRE, mppe
& mschapv2

Echo “net.inet.gre.allow=1" >> /etc/sysctl.conf

Echo “net.inet.ip.forwarding=1" >> /etc/sysctl.conf

Cd /usr/ports/net/poptop; Make && make install

Echo “pptp:” >> /etc/ppp/ppp.conf

Echo “enable MSChapV2" >> /etc/ppp/ppp.conf

Echo “set ifaddr 10.0.0.254 10.0.1.69-10.0.1.79" >>

/etc/ppp/ppp.conf
= Echo “dc password * *" >> /etc/ppp/ppp.secret

= /usr/local/sbin/pptpd;
= Configure PF to taste

ssh://root:uncon@192.168.1.5

= This will give you a quick [Coonectobed! [opte]
and effective PPTP
(mschapv2) VPN server,
compatible w/ WinXP

native clients

Good for |-users that
need to publish web-
content or pop/imap mail

Not Strong enough for v 'E;aE _t}'ui:z:- uzer narme and paszward for the following users:
pro per SYStem *I'"' -r-1r:,|::::tl who uses this computer
administration

ssh://root:uncon@192.168.1.5

= X.509 based IPSEC VPN is & obsd1 [pptp] Status
still the “real” way to do
VPN

= See Schneier and Mudge

on how well M$ cleaned
up mschap to create i Pt 10017
MSChapV2 and decide for

yourself

= http://www.schneier.com
/paper-pptpv2.html

ssh://root:uncon@192.168.1.5

SSH with private key on smartcard
OpenSSH client and server has support

Userspace program ‘sectok’ to read/write to Cyberflex
smartcards (and possibly others)

If we want to use X.509 based auth we'll either need to
patch sshd, or run a commercial sshd.

Popular win32 ssh clients already support X.509 cert on
smartcard (i.e. SecureCRT)

Passwords are going away — even latest Debian installer
disables ssh-pw-auth by default!

ssh://root:uncon@192.168.1.5

= OpenBSD has touted “native” IPSEC since
2.

a We can create site to site IPSEC tunnels

with kernel IPSEC support and userspace
isakmpd.

= No need for freeswan/openswan or kernel
hacking like on Linux

= See man vpn for details

ssh://root:uncon@192.168.1.5

= On Intel architectures, it's possible to tell with
some degree of certainty if an OpenBSD system
we're using is “real” or “memorex”

= This can be done by attempting to write to
Sensitive Register Instructions: SGDT, SLDT and
SIDT

= VMWare systems write predictable values to the
IDTR, LDTR, and GDTR (interrupt descriptor,
local descriptor and global descriptor registers)

ssh://root:uncon@192.168.1.5

&= enigma (local) - SecureCRT

File Edit WView Options Transfer Script Tools Window Help

- sCcoopyY —
A WHuare Fingerp

Test 1

bhase! OxFFciBS000 (shift: Oxff

Test: 2

bazet OxdeadddB8 (shift: Oxdeacddd)

[+] Test 3
COT pase; OxFFoUfo0Q (shifti Oxrel

by thk, 2003
Lugw , trapkit.del

root@obed] CLOZ

ssh2: BES-12¢ 20, 18 | 20Rows, 82 Cols WT100

= See ttp://www.trapkit.de/research/vmm for

more info

ssh://root:uncon@192.168.1.5

= SO is a locked down OpenBSD box actually
usable?

= Do I sleep better at night knowing I run

OpenBSD?

ssh://root:uncon@192.168.1.5

Theo de Raadt, CansecWest ‘03

= http://www.openbsd.org/papers/csw03/index.html
Stephanie

= http://www.innu.org/~brian/Stephanie/

Mudge & Bruce on M$PPTP (mschapv1&v2)
= http://www.schneier.com/pptp-faq.html (pre sellout)
= http://www.schneier.com/pptp.html (post-sellout!)
VMware detection

= http://invisiblethings.org/papers/redpill.ntml
= Joanna you rock!!!

= http://www.trapkit.de/#research

ssh://root:uncon@192.168.1.5

